Research Progress

Yuzheng Ke et al., PeerJ-2023

发表时间:2023-06-05编辑:余淳梅点击:

PeerJ -

A new species of Nanhsiungchelys (Testudines: Cryptodira: Nanhsiungchelyidae) from the Upper Cretaceous of Nanxiong Basin, China


 

Abstract

Nanhsiungchelyidae are a group of large turtles that lived in Asia and North America during the Cretaceous. Here we report a new species of nanhsiungchelyid, Nanhsiungchelys yangi sp. nov., from the Upper Cretaceous of Nanxiong Basin, China. The specimen consists of a well-preserved skull and lower jaw, as well as the anterior parts of the carapace and plastron. The diagnostic features of Nanhsiungchelys include a large entire carapace length (∼55.5 cm), a network of sculptures consisting of pits and ridges on the surface of the skull and shell, shallow cheek emargination and temporal emargination, deep nuchal emargination, and a pair of anterolateral processes on the carapace. However, Nanhsiungchelys yangi differs from the other species of Nanhsiungchelys mainly in having a triangular-shaped snout (in dorsal view) and wide anterolateral processes on the carapace. Additionally, some other characteristics (e.g., the premaxilla is higher than wide, the maxilla is unseen in dorsal views, a small portion of the maxilla extends posterior and ventral of the orbit, and the parietal is bigger than the frontal) are strong evidence to distinguish Nanhsiungchelys yangi from Nanhsiungchelys wuchingensis. A phylogenetic analysis of nanhsiungchelyids places Nanhsiungchelys yangi and Nanhsiungchelys wuchingensis as sister taxa. Nanhsiungchelys yangi and some other nanhsiungchelyids bear distinct anterolateral processes on the carapace, which have not been reported in any extant turtles and may have played a role in protecting the head. The Nanxiong Basin was extremely hot during the Late Cretaceous, and so we suggest that nanhsiungchelyids might have immersed themselves in mud or water to avoid the heat, similar to some extant tortoises. If they were capable of swimming, our computer simulations of fluid flow suggest the anterolateral processes could have reduced drag during locomotion.